按提交时间
按主题分类
按作者
按机构
您选择的条件: LI Peng
  • A novel single event upset reversal in 40-nm bulk CMOS 6 T SRAM cells

    分类: 核科学技术 >> 核探测技术与核电子学 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: In advanced technologies, single event upset reversal (SEUR) due to charge sharing can make the upset state of SRAM cells recover to their initial state, which can reduce the soft error for SRAMs in radiation environments. By using the full 3D TCAD simulations, this paper presents a new kind of SEUR triggered by the charge collection of the Off-PMOS and the delayed charge collection of the On-NMOS in commercial 40-nm 6 T SRAM cells. The simulation results show that the proposed SEUR can not occur at normal incidence, but can present easily at angular incidence. It is also found that the width of SET induced by this SEUR remains the same after linear energy transfer (LET) increases to a certain value. In addition, through analyzing the effect of the spacing, the adjacent transistors, the drain area, and some other dependent parameters on this new kind of SEUR, some methods are proposed to strengthen the recovery ability of SRAM cells.

  • Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process

    分类: 地球科学 >> 大气科学 提交时间: 2023-04-13 合作期刊: 《干旱区科学》

    摘要:The preceding and succeeding precipitation (PSP) often act together with extreme precipitation (EP), in turn, causing floods, which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China. In this study, event-based extreme precipitation (EEP) was defined as continuous precipitation that includes at least one day of EP. We analyzed the spatiotemporal variation characteristics of four EEP types (front EEP, late EEP, balanced EEP, and single day EEP) across the Loess Plateau (LP) based on data acquired from 87 meteorological stations from 1960 to 2019. Precipitation on the LP basically maintained a spatial pattern of "low in the northwest region and high in the southeast region", and EP over the last 10 a increased significantly. The cumulative precipitation percentage of single day EEP was 34% and was dominant for 60 a, while the cumulative precipitation percentage of front, late, and balanced EEP types associated with PSP accounted for 66%, which confirms to the connotation of EEP. The cumulative frequencies of front and late EEP types were 23% and 21%, respectively, while the cumulative frequency of balanced EEP had the lowest value at only 13%. Moreover, global warming could lead to more single day EEP across the LP, and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future. The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP, and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics.
     

  • Transport mechanism of eroded sediment particles under freeze-thaw and runoff conditions

    分类: 地球科学 >> 地理学 提交时间: 2022-05-25 合作期刊: 《干旱区科学》

    摘要: Abstract: Hydraulic erosion associated with seasonal freeze-thaw cycles is one of the most predominant factors, which drives soil stripping and transportation. In this study, indoor simulated meltwater erosion experiments were used to investigate the sorting characteristics and transport mechanism of sediment particles under different freeze-thaw conditions (unfrozen, shallow-thawed, and frozen slopes) and runoff rates (1, 2, and 4 L/min). Results showed that the order of sediment particle contents was silt>sand>clay during erosion process on unfrozen, shallow-thawed, and frozen slopes. Compared with original soils, clay and silt were lost, and sand was deposited. On unfrozen and shallow-thawed slopes, the change of runoff rate had a significant impact on the enrichment of clay, silt, and sand particles. In this study, the sediment particles transported in the form of suspension/saltation were 83.58%86.54% on unfrozen slopes, 69.24%84.89% on shallow-thawed slopes, and 83.75%87.44% on frozen slopes. Moreover, sediment particles smaller than 0.027 mm were preferentially transported. On shallow-thawed slope, relative contribution percentage of suspension/saltation sediment particles gradually increased with the increase in runoff rate, and an opposite trend occurred on unfrozen and frozen slopes. At the same runoff rate, freeze-thaw process had a significant impact on the relative contribution percentage of sediment particle transport via suspension/saltation and rolling during erosion process. The research results provide an improved transport mechanism under freeze-thaw condition for steep loessal slopes.

  • Freeze–thaw effects on erosion process in loess slope under simulated rainfall

    分类: 地球科学 >> 地理学 提交时间: 2021-01-15 合作期刊: 《干旱区科学》

    摘要: Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes. The area affected by freeze–thaw erosion in China exceeds 13% of the national territory. So understanding the effect of freeze–thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering. In this study, we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions, unfrozen slope (UFS) and frozen slope (FS), and three rainfall intensities of 0.6, 0.9 and 1.2 mm/min. The results showed that the initial runoff time of FS occurred much earlier than that of the UFS. Under the same rainfall intensity, the runoff of FS is 1.17–1.26 times that of UFS; and the sediment yield of FS is 6.48–10.49 times that of UFS. With increasing rainfall time, rills were produced on the slope. After the appearance of the rills, the sediment yield on the FS accounts for 74%–86% of the total sediment yield. Rill erosion was the main reason for the increase in soil erosion rate on FS, and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope. A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS (R2>0.97, PFS0.6 (72.30 μm)>UFS1.2 (72.23 μm)>substrate (71.23 μm)>FS1.2 (71.06 μm)>FS0.9 (70.72 μm). During the early stage of the rainfall, the MWD of the FS was relatively large. However, during the middle to late rainfall, the particle composition gradually approached that of the soil substrate. Under different rainfall intensities, the mean soil erodibility (MK) of the FS was 7.22 times that of the UFS. The ratio of the mean regression coefficient C2 (MC2) between FS and UFS was roughly correspondent with MK. Therefore, the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills. This article explored the influence mechanism of freeze–thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.

  • Influences of sand cover on erosion processes of loess slopes based on rainfall simulation experiments

    分类: 地球科学 >> 地球科学其他学科 提交时间: 2017-12-08 合作期刊: 《干旱区科学》

    摘要: Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.